Local Descent For Temporal Logic Falsification of Cyber-Physical Systems (Extended Technical Report)
نویسندگان
چکیده
One way to analyze Cyber-Physical Systems is by modeling them as hybrid automata. Since reachability analysis for hybrid nonlinear automata is a very challenging and computationally expensive problem, in practice, engineers try to solve the requirements falsification problem. In one method, the falsification problem is solved by minimizing a robustness metric induced by the requirements. This optimization problem is usually a non-convex non-smooth problem that requires heuristic and analytical guidance to be solved. In this paper, functional gradient descent for hybrid systems is utilized for locally decreasing the robustness metric. The local descent method is combined with Simulated Annealing as a global optimization method to search for unsafe behaviors.
منابع مشابه
An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems
Search-based testing is widely used to find bugs in models of complex Cyber-Physical Systems. Latest research efforts have improved this approach by casting it as a falsification procedure of formally specified temporal properties, exploiting the robustness semantics of Signal Temporal Logic. The scaling of this approach to highly complex engineering systems requires efficient falsification pro...
متن کاملA Probabilistic Temporal Logic Falsification of Cyber-Physical Systems
We present a Monte-Carlo optimization technique for finding system behaviors that falsify a Metric Temporal Logic (MTL) property. Our approach performs a random walk over the space of system inputs guided by a robustness metric defined by the MTL property. Robustness is guiding the search for a falsifying behavior by exploring trajectories with smaller robustness values. The resulting testing f...
متن کاملCompositional Falsification of Cyber-Physical Systems with Machine Learning Components
Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small...
متن کاملTechnical Report: Control Using the Smooth Robustness of Temporal Logic
Cyber-Physical Systems must withstand a wide range of errors, from bugs in their software to attacks on their physical sensors. Given a formal specification of their desired behavior in Metric Temporal Logic (MTL), the robust semantics of the specification provides a notion of system robustness that can be calculated directly on the output behavior of the system, without explicit reference to t...
متن کاملActive Requirement Mining of Bounded-Time Temporal Properties of Cyber-Physical Systems
This paper uses active learning to solve the problem of mining bounded-time signal temporal requirements of cyber-physical systems or simply the requirement mining problem. By utilizing robustness degree, we formulates the requirement mining problem into two optimization problems, a parameter synthesis problem and a falsification problem. We then propose a new active learning algorithm called G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04866 شماره
صفحات -
تاریخ انتشار 2018